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This paper describes Species Explorer,  an interface to allow creative exploration of generative
systems with multi-dimensional parameter spaces. The system combines both evolutionary and
machine learning approaches. It was originally designed to assist creating work for the author's
'Cellular Forms' and 'Hybrid Forms' series, where a large number of parameters are used to yield
emergent results, but is a general framework that could be applied to many other systems.
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1. INTRODUCTION

Species Explorer is a system that was developed
out of necessity: how to deal with increasingly large
numbers  of  parameters  in  systems  for  computer
based  generative  art  while  retaining  creative
influence.

Typically  generative  systems  are  based  on  an
algorithmic process that is controlled by a number
of parameters. Given a set of parameter values the
process  can  be run  to  create  an  output.  Classic
examples include Conway's Game of Life (Conway,
1970)  and  reaction  diffusion  equations  (Turing,
1952).

The most interesting systems are generally those
that create emergent results. For these systems the
relationship between the input parameters and the
output  is  typically  complex  and  non-linear,  with
effects  such  as  sensitive  dependence  on  initial
conditions.

With a small number of dimensions, such as up to
3 parameters, the space of results can be relatively
easily  explored  by  simply  varying  individual
parameter  values  and  plotting  the  effects  of
different  parameter  combinations.  However,  as
more  parameters  are  added  it  becomes
increasingly difficult to use this type of approach to
explore  the  space  and influence  the  results  in  a
creative direction.

Species Explorer is designed to allow the user to
work with such systems, guiding the search with a
creative  intent  without  being  overwhelmed  by
having  to  deal  directly  with  all  the  individual
parameters. The system uses a hybrid approach,
mixing both evolutionary search methods, such as
mutation  and  cross-breeding,  with  lazy  machine
learning  techniques.  The  system  acts  as  a
framework that allows different methods to be used
to create 'populations' of 'individuals',  where each
population can utilize a different technique for the
selection of the parameters to generate individuals.
In particular, different methods may be appropriate
depending on the artist's intent. For example:

 Initial exploration, where the user is trying
to  get  a  basic  understanding  of  how  a
system works and what sort of result may
be possible.

 Secondary exploration where the search is
steered into broad areas of the parameter
space that appear to be potentially fruitful,
and  away  from  regions  that  have  been
found  to  yield  invalid  results  or  are
otherwise undesirable.

 Refined  focus  within  a  small  range  of
parameter  values  that  appear  to  produce
interesting  results,  often  to  create  final
artistic artefacts.

 Looking for novelty: searching the space for
results  unlike  those  seen  previously  that
may take the exploration in a new direction.
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The essential idea is that the computer acts as an
assistant in the process: taking feedback from the
user,  such  as  what  they  like  or  don't  like,  and
proposing  new  parameter  values  to  try  that  will
hopefully generate interesting new results and aid
exploring the potential of the generative system.

2. PREVIOUS WORK

With a small number of parameters, the space of
possibilities  can  usually  be  explored  quite
effectively  by  simply  trying  out  combinations  of
parameter values. One technique that is common
is to create a chart  where all  the parameters are
sampled independently at regularly spaced values
and results are plotted to show the results.

Figure 1: Chart exploring the effect of varying parameter
values from the Aggregation series

This  method  of  parameter  exploration  can  be
effective,  and was used by the author  for  earlier
work such as for his 'Aggregation' and 'Flow' series,
but only typically works with up to 3 parameters.

A  number  of  authors  have  proposed  using
evolutionary methods to explore larger numbers or
parameters. Examples include Dawkin's Biomorphs
(Dawkins,  1986)  and  Mutator  (Todd  &  Latham,
1992). A number of systems that use evolutionary
selection  for  design  are  described  in  (Bentley,
1999).

As  demonstrated  by  natural  processes,
evolutionary  methods  can  be  effective  even  with
extremely  large  numbers  of  parameters.  One
problem  though  can  be  that  these  methods
generally lead to exploring a small number of paths
within the space of available possibilities. Children
are typically created with parameter values similar

to  parents,  which  can  bias  the  search  towards
areas  of  the  parameter  space  that  have  already
been highly sampled.

In  more  recent  years  a  number  of  authors  have
proposed  using  machine  learning  techniques  to
assist  human designers.  In general  these are for
domain  specific  applications,  such  as  for
architectural space frame structures (Hanna, 2007),
structurally  valid  furniture  (Umetani,  Igarashi  &
Mitra, 2012) or aircraft designs (Oberhauser,  et al.
2015).  In  these  systems  machine  learning  is
typically used to learn about specific properties of
the system. This is then used to provide interactive
feedback  for  the  user  about  whether  an  object
designed  by  them  is  likely  to  have  desired
properties,  such  as  being  structurally  feasible,
without  having  to  do  computationally  prohibitive
tasks such as full finite element analysis.

3. AIMS

The key  intent  is  for  the  computer  to  act  as  an
active  assistant,  helping  guide  the  user  as  they
explore  a  system  to  discover  its  potential
capabilities and making the best use of all the input
the  user  has  made.  The user  should  be able  to
steer  the  search  with  a  creative  intent,  refining
particularly  interesting  results,  with  the  computer
assisting them in exploring the space for novel rich
behaviour.

The specific need for such a system came from the
number  of  parameters  that  the  author  found  he
needed  when  he  was  developing  the  simulation
engine for 'Cellular Forms' (Lomas, 2014).

Figure 2: Image from the Cellular Forms series
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This system is  designed to explore how complex
forms  can  be  emergently  created  from  growth
processes  using  a  simplified  model  of
morphogenesis  at  the  level  of  individual  cells.
Parameters control  a wide number of simulations
settings,  such  as  to  control  how  nutrient  is
generated,  which  cells  are  selected  to  split,  the
plane of cleavage for a split,  and forces between
adjacent  cells.  The  system  is  designed  as  an
extensible  framework  to  explore  the  effects  of
different  influences,  with  early  versions  of  the
simulation engine having 12 parameters, and more
recent versions having over 30.

One of the intuitions from earlier work, such as the
Aggregation series,  was that  the most interesting
results  often occurs at  'transition zones'  between
regions  of  relatively  homogeneous  behaviour,  as
can be seen in Figure 1. It  is also expected that
when dealing with  dynamical  systems, interesting
emergent  behaviour  will  often  occur  in  small
transition regions between regularity and chaos. All
of these considerations can make the exploration of
a  multi-dimensional  parameter  space  to  find  the
most  interesting  complex  results  particularly
challenging.

A  system that  is  based  on  aesthetic  judgements
from a human also needs to be tolerant of effects
such as inconsistent ratings from the user as they
change their  opinion about what they consider or
don't consider to be interesting.

4. IMPLEMENTATION

Species Explorer has been designed as a general
framework to explore any system that is driven by a
fixed  number  of  parameter  values.  It  is
implemented in Python together with Qt, using the
PySide  Qt  bindings.  This  has  allowed  rapid
development and experimentation.

It  is  implemented as a single  document  interface
application using nested tabbed dock widgets. The
main components of the user interface are handled
using a number of panels, such as the 'Individual
Examiner',  'Species Panel'  and 'Score Chart',  any
of which can be docked within tabs. This allows a
flexible customizable layout for the user interface.

The  current  implementation  uses  Windows,  but
everything has been written in an operating system
agnostic  manner that  should facilitate support  for
other operating systems.

4.1 Individuals, Populations and the Species

Species Explorer uses the concepts of 'individuals',
'populations'  and  the  'species'  to  help  to  provide
organizational structure.

4.1.1 Individuals
An individual is created for every position sampled
in the parameter space. Species Explorer selects
the  parameter  values  for  the  individual,  then
generates  a  'creation  script'.  This  is  a  Windows
batch  file  or  Python  script  that  is  executed  as  a
command  line  process  to  run  the  generative
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system and create output that the user can review
and evaluate.

The generation process is expected to produce at
least  one image file  that  can be displayed in the
user  interface  as  a  representative  image  for  the
individual,  and  a  log  file  that  can  be  parsed  to
extract additional data such as how long it took to
run  the  generative  process,  if  there  were  any
errors,  or  any  other  meta  data  that  should  be
recorded for that individual.

In  the  user  interface  the  'Individuals  Examiner'
panel can be used to view the representative image
for each individual, the parameter values that were
used to generate the individual, and additional data
such  as  if  the  individual  has  any  'parents'  or
'children'  through  use  of  evolutionary  creation
methods.

The user can review each individual and give them
score  values  and  place  them  into  categories  as
described in section 4.2.

4.1.2 Populations
Populations are used to group together individuals
and define which creation method should be used
to select the parameters to create new individuals
for that population. Examples of creation methods
include random selection of parameter values using
probability distributions,  mutation of  the values of
existing  individuals,  or  cross-breeding  pairs  of
individuals  by  choosing  parameters  that  blend
between the values from two parents.

Populations  can  also  be  used  to  group  together
individuals into ‘Selection Pools’ for other purposes.
For example, a selection pool could be created for
a group of individuals that appear to be particularly
interesting so that those individuals can be used as
the  set  of  potential  parents  that  will  be  selected
from when using cross-breeding.

4.1.3 The Species
The  Species  defines  the  parameters  that  are
needed to generate each individual, as well as the
template used to generate the creation scripts.

Each  species  has  a  fixed  number  of  named
parameters.  These  parameters  can  be  floating
point,  integer  or  boolean  values.  Numeric  values
can  also  be  specified  as  being  'logarithmic'
meaning that they are strictly positive valued and
that when performing operations such as selecting
them from a random distribution those operations
should be done using the natural logarithm of the
parameter value. This is typically advantageous for
values where the ratio between different parameter
values is more relevant than absolute values.

In the template creation script tokens with the name
of each parameter, such as '<springStrength>', are
used.  These  are  replaced  by  an  individual's
parameter values when the creation script for that
individual is generated. There are also a number of
additional tokens, such as '${imageFileStem}' and
'${speciesName}', that can be used in the template
script  to represent values of  useful  variables that
will filled in with the appropriate values.

C:\bin\grayScott.exe <Da> <Db> <f> <k> ${imageFileStem}

Figure 2: Example of a simple template creation script

Since  Windows  batch  files  or  Python  scripts  are
used  for  creation  scripts,  the  creation  script  can
describe  a  series  of  commands  that  need  to  be
executed.  For  example,  this  can  be  used  to  do
additional  image  processing  after  the  main
executable  for  the  generative  system  has
completed, or to include more complex control logic
as part of the creation process.

4.2 Score sets and Categorization

Score  sets  are  used  by  the  user  to  rate  and
categorize  individuals.  The  values  assigned  to
individuals can then be used for purposes such as
selecting  which  individuals  should  be  chosen  as
parents for cross-breeding, or to estimate the likely
score value at new positions in parameter space.

Score  values  can  be  integers,  floating  point
numbers, or category values. By default there is a
single floating point score set called 'score' which
takes values in the range 0 to 10, but the user can
modify this  and create  their  own additional  score
sets.

Categories  are  a  special  type  of  score  set  that
allow each individual to be assigned a value from a
set of specified names instead of numeric values.
They are  typically  used  to  divide  individuals  into
groups  that  appear  to  have  common  properties.
For  example  you  could  have  a  category  called
'formType' which could take values such as ‘brain’
or ‘reptile skin’ depending on the appearance of the
individual.

The  value  for  any  score  set  can  also  be  set  to
‘None’. This means that the individual hasn't been
assigned a score, and that individual will be ignored
when performing operations such as estimating the
score value at new positions in parameter space.
By default any newly created individual has all its
score set values set to 'None'.

The 'Score Chart' panel in the user interface can be
used  to  assist  visualizing  score  values  and
assigning  scores  to  individuals.  This  panel  uses
thumbnails for each individual,  displaying them in
horizontal  bars  for  each  score  value,  and  allows
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assignments  of  scores  by  using  keyboard  short
cuts or drag and drop.

Figure 4: Image from the Plant-like Cellular Forms
series

4.3 Score expressions and selection tests

The  selection  of  individuals,  such  as  choosing
parents  to  breed  from,  is  done  using  score
expressions and selection tests.

The  score  expression  is  a  way  of  giving  any
individual a fitness score. This can use values set
using  score  sets,  but  can  also  use  full  Python
mathematical  syntax.  This  means  that  more
complex  fitness  values  can  be  expressed  than
simply using single score values. For example, in
addition to using 'score' to give an overall rating to
individuals  you  could  have  a  score  set  called
'bushiness'  to  give  a  rating  for  how bush-like  an
object is. You could then use:

score * bushiness

as a score function to select individuals that have a
high value for both 'score' and 'bushiness'.

Category  values  can  also  be  used  in  score
functions.  For  example,  if  you  have  a  category
called  'formType'  and  you  want  to  select  objects
that have a high value for 'score' and have had the
'formType' set to 'brain' you could use:

score * formType_values['brain']

The selection test is a boolean test used to specify
whether a given individual should be considered or
not.  Simple  selection  tests  are  just  lists  of
individuals  or  populations.  More  advanced

selection tests  can be specified by using Python
expressions  that  return  boolean  values.  For
example,  to  only  consider  individuals  whose
'formType'  is  'brain'  and  whose  value  for
'bushiness'  is  greater  than  5  you  could  use  the
selection test:

(formType == 'brain') and (bushiness > 5)

4.4 Creation methods

A variety of different methods are provided that can
be used  to  select  the  parameter  values  for  new
individuals.  These  govern  how  the  software
suggests  new  sample  points  in  the  parameter
space where the generative system should be run
to produce results that the user can then evaluate.

The  system  is  extensible,  allowing  new  creation
methods  to  be  easily  implemented.  The  existing
creation  methods  can  be  divided  into  3  types:
simple  methods,  evolutionary  methods  and
machine learning methods.

4.4.1 Simple creation methods
These methods calculate parameter values for new
individuals without needing any data from existing
individuals. These methods are typically used as a
first step to create an initial set of individuals.

Currently three methods are implemented:

 Random Population: parameter values are
created randomly using specified probability
distributions.

 Fixed  Value:  individuals  are  generated
using parameter values explicitly  specified
by the user.

 Wedge  Test:  parameter  values  are
generated  with  regular  spacing,  similar  to
test  chart  shown  in  Figure  1.  This  is
generally  only  useful  for  varying  a  small
number of parameter values.

4.4.2 Evolutionary creation methods
These methods involve selection of individuals to
act as 'parents', with the parameter values for new
child  individuals  being  based  on  those  of  the
parents.

Currently the following methods are implemented:

 Standard Mutation: for each new individual
a  single  parent  is  selected,  whose
parameters  are  randomly  modified
according to specified distributions to create
the child.

 Adaptive  Mutation:  similar  to  Standard
Mutation, except the amount of mutation for
each parameter is based on the parameter
values of the nearest neighbours.

5



Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

 Cross  Blend:  for  each  new individual  two
parents are  selected,  with  the parameters
for  the  child  being  randomly  selected
blends of the parent values.

 Cross  Blend  Neighbours:  similar  to  Cross
Blend except the second parent is chosen
from the closest neighbours of the first.

4.4.3 Machine learning creation methods
These  methods  use  lazy  machine  learning
techniques  to  estimate  the  values  of  score
expressions  at  new  positions  in  the  parameter
space. New individuals are chosen based on these
estimate  values  using  a  Monte  Carlo  method  to
estimate  the  score  expression  at  a  number  of
candidate points, and choose one of the candidates
with  a  probability  proportional  to  the  estimated
values.  This  means  that  parameter  combinations
that are expected to have high values for the score
expression will be preferentially selected.

Two  methods  for  estimating  values  of  score
expressions are currently implemented:

 K-Nearest  Neighbours:  values  are
estimated by finding the nearest neighbours
to the sample point that have a valid value
for  the  score  expression  and  averaging
them using a weight function based on the
distance from the sample point to each of
the neighbours.

 Radial Basis Function: values are estimated
using a radial basis function to interpolate
the  values  from  a  given  number  of
neighbours.

When estimating values from a category score set
separate floating point valued functions are created
for each name value that  the category can take,
These functions have the value 1 if  an individual
has been assigned the corresponding name value
and  0  if  they  don't.  This  allows  interpolation
methods to be used, with the results interpreted as
a  measure  of  the  probability  that  an  individual
generated  at  the  specified  position  in  parameter
space will take that name value. For example, the
estimated  value  could  be  used  to  measure  the
probability that a form generated with a given set of
parameter values will be 'reptile skin' like.

4.5 Additional Features

A  number  of  panels  are  provided  in  the  UI  for
special purposes such as:

 Genealogy  Chart:  shows  a  graphical
representation of the parents and children
of the currently selected individual.

 Statistics  Tests:  allows  implementation  of
Python plug-ins to run statistic tests on data
such  as  correlation  between  parameters

and scores. Also allows display of data in
graphical  form  such  as  histograms  or
scatter charts.

The  system  also  provides  the  ability  to  specify
species specific extensions using plug-ins.  These
allow  customizations  such  as  special  widgets  to
modify how individuals are shown in the Individual
Examiner, actions to be triggered based on global
key-press  events,  and  calculation  of  additional
meta-data that will be held for each individual after
the  generation  process  for  that  individual  has
completed.

5. RESULTS

5.1 Different search phases

One  of  the  main  strengths  of  the  system  is  to
provide  a  variety  of  different  techniques  for
generating parameter  values,  each of  which  may
be appropriate depending on the user's intent.

5.1.1 Initial exploration
During the first phase of exploring a new generative
system,  when  the  user  typically  doesn't  have  a
clear idea of what regions of the parameter space
may be interesting, simple creation methods such
as random parameter  generation as described in
4.4.1 are generally appropriate.

In general the author has found that simple random
parameter generation is useful for this phase. If the
number of parameters is small (typically 3 or less)
then a Wedge Test that samples all the parameters
with regular spacing,may be used.

5.1.2 Secondary exploration
Once  the  user  has  got  some  initial  results  from
random sampling the next phase is generally rating
those results using score sets and using creation
methods that preferentially create more samples in
areas that are likely to be productive without overly
narrowing the search.

During this phase machine learning methods that
can  estimate  score  functions  at  any  position  in
parameter space appear to work well. As long as
the  estimated  score  is  better  than  random,  the
search  should  get  directed  towards  more
productive regions.

5.1.3 Refined focus
If  the  user  finds  some  particularly  interesting
individuals  that  they  want  to  refine  further  then
other  methods  are  generally  preferable.  In
particular the intent is to focus the search within a
limited  range  of  parameter  values  around
interesting  individuals  rather  than  search  a  wide
region of the parameter space.
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During this  phase the author  generally  creates a
selection  pool  of  the  individuals  that  he  is
particularly  interested  in  and  uses  adaptive
mutation  or  cross-breeding  between  neighbours
with the first parent chosen from the selection pool.

5.1.4 Looking for novelty
In  contrast  to  the  previous  section,  if  the  user's
intent  is  to  find  new  interesting  regions  of  the
parameter space then other methods may be more
appropriate.

Since  cross  breeding  and  mutation  methods
generally bias the search towards regions that have
already been highly sampled,  the author typically
utilizes machine learning methods when looking for
novel results.

During  this  phase  carefully  constructed  score
expressions can be beneficial. For example, it may
be  useful  to  try  to  focus  the  search  on  regions
where  the  score  for  individuals  is  significantly
different  from  what  would  be  expected  using
estimation.  One  way  of  expressing  this  is  to
calculate the difference between the actual  score
given to each individual  and the estimated score
that would have been given based on all the other
individuals, and then using a score expression such
as

abs(estimatedScore – score)

5.2 Machine learning methods

While searching for  appropriate  machine learning
methods, the author has run tests to try to evaluate
which methods appear to work best with the type of
data created.  In particular  we want methods that
can estimate arbitrary  score expressions for  new
parameter  values,  don't  require  the  user  to  fine
tune values or specify features, can make use of all
the data the user has supplied as soon as the user
has  rated  any  individuals,  and  aren't  aversely
affected  by  non-uniform  distribution  of  samples.
This  has  led  the  author  towards  lazy  machine
learning techniques such as k-nearest neighbours
and interpolation using radial basis functions.

To  help  determine  which  methods  produce  the
most  useful  estimates,  the  author  has  tested  a
number of data sets from his work on the Cellular
Forms and Hybrid Forms series using variations on
k-nearest  neighbours  and  radial  basis  functions.
Presented here are the results from 3 data sets. To
provide  a  measure  of  how  well  each  method
estimates the score the tests  use the root  mean
square error  value of  the difference between the
score the author  assigned to each individual  and
the score that would be estimated by each method
using the set  of  previously  generated individuals.
Data was only used from the previously generated

individuals to make sure that the tests account for
early stages in the search when there are only a
small number of data points available to create the
estimates.

When using k-nearest neighbours, weight functions
of  the  form  1/dn,  where  d  is  the  distance  in
parameter space between two points, were tested
with various exponent values n. For the radial basis
functions  all  the  standard  interpolation  basis
functions provided by the Python SciPy library were
tested.

To provide a baseline comparison of whether these
methods  are  providing  better  than  random
estimates,  the  RMS  error  was  also  calculated
using the average score of all previous individuals
as the score estimator.

Table 1: Data sets used to evaluated score estimation
methods

Data set No. of
individuals

No. of
species

parameters
Set 1 (Cellular Forms) 1776 12

Set 2 (Plant-like Forms) 2200 19

Set 3 (Hybrid Forms) 6926 28

Table 2: RMS error values for different score estimation
methods. The best (smallest) results for each data set

are highlighted

Score estimation
method

RMS score error

Set 1 Set 2 Set 3

Average (baseline) 3.268 2.141 2.120

kNN weight n=0 2.946 1.944 1.717

kNN weight n=1 2.904 1.939 1.711

kNN weight n=2 2.869 1.935 1.704

kNN weight n=3 2.868 1.931 1.697

kNN weight n=4 2.886 1.929 1.691

RBF Linear 2.779 1.910 1.404

RBF Inverse 7.663 1.963 1.421

RBF Gaussian 10.26 1.989 1.537

RBF Multiquadratic 11.07 2.182 1.693

RBF Thin-plate 15.14 166.5 172.8

RBF Cubic 95.13 3117 527.3

RBF Quintic 8107 337.6 2587

As can  be seen,  estimation  using a  linear  radial
basis function consistently gave the best (lowest)
RMS  score  error  in  all  cases.  Different  basis
functions  give  very  different  results.  In  particular,
thin-plate,  cubic  and quintic  basis  functions  were
the  worst  performing,  with  RMS errors  that  were
worse  than  using  a  simple  average  as  the
estimator,  and  often  significantly  higher  than  the
maximum score range of 10. This is probably due

7



Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

to  these  methods  over-fitting  the  data  and
extrapolating.  This  may  be  exacerbated  by  the
nature of the data, with non-uniform sampling and
potentially inconsistent assignment of score values
by the user when making subjective assessments.

The RMS score errors using k-nearest neighbours
are all  better than the baseline method using the
average score, with an inverse weight exponent of
4 giving the best from test data, though the results
for  all  the different  inverse weight  exponents are
quite similar.

Using  linear  radial  basis  functions  appear  to
generally give the lowest RMS error scores, but k-
nearest  neighbours can be computationally faster
to  calculate.  The  default  options  in  Species
Explorer are set to offer both radial basis functions
using  linear  or  k-nearest  neighbours  using  an
inverse weight exponent of 4.0.

6. FUTURE WORK

Species Explorer is very much a work in progress,
with the author actively adding new features as he
gains experience using it.

There  are  a  number  of  areas  for  future  work,  in
particular  to  explore  alternative  methods  of
estimating  score  functions  for  new  parameters.
Since they are based on distance measures and
proximity  to  neighbours,  the  current  use  of  lazy
machine  learning  methods  is  likely  to  be  less
effective if significantly more parameters are used.

7. CONCLUSION

Species Explorer was born out of necessity when
dealing with generative systems with more than 3
parameters.  Allowing  a  number  of  different
methods to determine the parameter values to next
sample  appears  to  work  well,  with  different
methods being appropriate depending on the intent
of the user.

In  many ways  the  proof  of  a  system like  this  is
whether it produces good results. As the author has
been the only user to date this is somewhat difficult
to  evaluate,  but  all  the  exhibited  work  from  his
Cellular Forms and Hybrid Forms series has been
generated  using  samples  suggested  by  Species
Explorer. With 10 or more parameters, testing the
effects  of  all  parameter  combinations  was
impossible and complex inter-dependence between
parameters meant that varying one parameter at a
time  was  not  creating  the  desired  results.  The
author felt he has a rich simulation engine but was
frustrated  by  how  difficult  it  was  to  explore  its
possibilities.

With Species Explorer the author feels that he has
been  able  to  much  more  effectively  explore  the
space of possibilities, and doesn't  believe that he
would have been able to create most of his recent
results  without  it  acting  as  a  loyal  but  honest
assistant in the creative process.

Figure 5: Image from the Hybrid Forms series
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