
Species Explorer: an interface for artistic
exploration of multi-dimensional parameter

spaces

Andy Lomas
Independent Artist

20 Kingsley Avenue, West Ealing,
London W13 0EF, UK

andylomas@yahoo.com

This paper describes Species Explorer, an interface to allow creative exploration of generative
systems with multi-dimensional parameter spaces. The system combines both evolutionary and
machine learning approaches. It was originally designed to assist creating work for the author's
'Cellular Forms' and 'Hybrid Forms' series, where a large number of parameters are used to yield
emergent results, but is a general framework that could be applied to many other systems.

Generative art. Evolutionary design. Machine learning. Computationally assisted design.

1. INTRODUCTION

Species Explorer is a system that was developed
out of necessity: how to deal with increasingly large
numbers of parameters in systems for computer
based generative art while retaining creative
influence.

Typically generative systems are based on an
algorithmic process that is controlled by a number
of parameters. Given a set of parameter values the
process can be run to create an output. Classic
examples include Conway's Game of Life (Conway,
1970) and reaction diffusion equations (Turing,
1952).

The most interesting systems are generally those
that create emergent results. For these systems the
relationship between the input parameters and the
output is typically complex and non-linear, with
effects such as sensitive dependence on initial
conditions.

With a small number of dimensions, such as up to
3 parameters, the space of results can be relatively
easily explored by simply varying individual
parameter values and plotting the effects of
different parameter combinations. However, as
more parameters are added it becomes
increasingly difficult to use this type of approach to
explore the space and influence the results in a
creative direction.

Species Explorer is designed to allow the user to
work with such systems, guiding the search with a
creative intent without being overwhelmed by
having to deal directly with all the individual
parameters. The system uses a hybrid approach,
mixing both evolutionary search methods, such as
mutation and cross-breeding, with lazy machine
learning techniques. The system acts as a
framework that allows different methods to be used
to create 'populations' of 'individuals', where each
population can utilize a different technique for the
selection of the parameters to generate individuals.
In particular, different methods may be appropriate
depending on the artist's intent. For example:

 Initial exploration, where the user is trying
to get a basic understanding of how a
system works and what sort of result may
be possible.

 Secondary exploration where the search is
steered into broad areas of the parameter
space that appear to be potentially fruitful,
and away from regions that have been
found to yield invalid results or are
otherwise undesirable.

 Refined focus within a small range of
parameter values that appear to produce
interesting results, often to create final
artistic artefacts.

 Looking for novelty: searching the space for
results unlike those seen previously that
may take the exploration in a new direction.

1

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

The essential idea is that the computer acts as an
assistant in the process: taking feedback from the
user, such as what they like or don't like, and
proposing new parameter values to try that will
hopefully generate interesting new results and aid
exploring the potential of the generative system.

2. PREVIOUS WORK

With a small number of parameters, the space of
possibilities can usually be explored quite
effectively by simply trying out combinations of
parameter values. One technique that is common
is to create a chart where all the parameters are
sampled independently at regularly spaced values
and results are plotted to show the results.

Figure 1: Chart exploring the effect of varying parameter
values from the Aggregation series

This method of parameter exploration can be
effective, and was used by the author for earlier
work such as for his 'Aggregation' and 'Flow' series,
but only typically works with up to 3 parameters.

A number of authors have proposed using
evolutionary methods to explore larger numbers or
parameters. Examples include Dawkin's Biomorphs
(Dawkins, 1986) and Mutator (Todd & Latham,
1992). A number of systems that use evolutionary
selection for design are described in (Bentley,
1999).

As demonstrated by natural processes,
evolutionary methods can be effective even with
extremely large numbers of parameters. One
problem though can be that these methods
generally lead to exploring a small number of paths
within the space of available possibilities. Children
are typically created with parameter values similar

to parents, which can bias the search towards
areas of the parameter space that have already
been highly sampled.

In more recent years a number of authors have
proposed using machine learning techniques to
assist human designers. In general these are for
domain specific applications, such as for
architectural space frame structures (Hanna, 2007),
structurally valid furniture (Umetani, Igarashi &
Mitra, 2012) or aircraft designs (Oberhauser, et al.
2015). In these systems machine learning is
typically used to learn about specific properties of
the system. This is then used to provide interactive
feedback for the user about whether an object
designed by them is likely to have desired
properties, such as being structurally feasible,
without having to do computationally prohibitive
tasks such as full finite element analysis.

3. AIMS

The key intent is for the computer to act as an
active assistant, helping guide the user as they
explore a system to discover its potential
capabilities and making the best use of all the input
the user has made. The user should be able to
steer the search with a creative intent, refining
particularly interesting results, with the computer
assisting them in exploring the space for novel rich
behaviour.

The specific need for such a system came from the
number of parameters that the author found he
needed when he was developing the simulation
engine for 'Cellular Forms' (Lomas, 2014).

Figure 2: Image from the Cellular Forms series

2

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

This system is designed to explore how complex
forms can be emergently created from growth
processes using a simplified model of
morphogenesis at the level of individual cells.
Parameters control a wide number of simulations
settings, such as to control how nutrient is
generated, which cells are selected to split, the
plane of cleavage for a split, and forces between
adjacent cells. The system is designed as an
extensible framework to explore the effects of
different influences, with early versions of the
simulation engine having 12 parameters, and more
recent versions having over 30.

One of the intuitions from earlier work, such as the
Aggregation series, was that the most interesting
results often occurs at 'transition zones' between
regions of relatively homogeneous behaviour, as
can be seen in Figure 1. It is also expected that
when dealing with dynamical systems, interesting
emergent behaviour will often occur in small
transition regions between regularity and chaos. All
of these considerations can make the exploration of
a multi-dimensional parameter space to find the
most interesting complex results particularly
challenging.

A system that is based on aesthetic judgements
from a human also needs to be tolerant of effects
such as inconsistent ratings from the user as they
change their opinion about what they consider or
don't consider to be interesting.

4. IMPLEMENTATION

Species Explorer has been designed as a general
framework to explore any system that is driven by a
fixed number of parameter values. It is
implemented in Python together with Qt, using the
PySide Qt bindings. This has allowed rapid
development and experimentation.

It is implemented as a single document interface
application using nested tabbed dock widgets. The
main components of the user interface are handled
using a number of panels, such as the 'Individual
Examiner', 'Species Panel' and 'Score Chart', any
of which can be docked within tabs. This allows a
flexible customizable layout for the user interface.

The current implementation uses Windows, but
everything has been written in an operating system
agnostic manner that should facilitate support for
other operating systems.

4.1 Individuals, Populations and the Species

Species Explorer uses the concepts of 'individuals',
'populations' and the 'species' to help to provide
organizational structure.

4.1.1 Individuals
An individual is created for every position sampled
in the parameter space. Species Explorer selects
the parameter values for the individual, then
generates a 'creation script'. This is a Windows
batch file or Python script that is executed as a
command line process to run the generative

3

Figure 3: Species Explorer user interface showing the Individual Examiner, Genealogy View and Score Chart

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

system and create output that the user can review
and evaluate.

The generation process is expected to produce at
least one image file that can be displayed in the
user interface as a representative image for the
individual, and a log file that can be parsed to
extract additional data such as how long it took to
run the generative process, if there were any
errors, or any other meta data that should be
recorded for that individual.

In the user interface the 'Individuals Examiner'
panel can be used to view the representative image
for each individual, the parameter values that were
used to generate the individual, and additional data
such as if the individual has any 'parents' or
'children' through use of evolutionary creation
methods.

The user can review each individual and give them
score values and place them into categories as
described in section 4.2.

4.1.2 Populations
Populations are used to group together individuals
and define which creation method should be used
to select the parameters to create new individuals
for that population. Examples of creation methods
include random selection of parameter values using
probability distributions, mutation of the values of
existing individuals, or cross-breeding pairs of
individuals by choosing parameters that blend
between the values from two parents.

Populations can also be used to group together
individuals into ‘Selection Pools’ for other purposes.
For example, a selection pool could be created for
a group of individuals that appear to be particularly
interesting so that those individuals can be used as
the set of potential parents that will be selected
from when using cross-breeding.

4.1.3 The Species
The Species defines the parameters that are
needed to generate each individual, as well as the
template used to generate the creation scripts.

Each species has a fixed number of named
parameters. These parameters can be floating
point, integer or boolean values. Numeric values
can also be specified as being 'logarithmic'
meaning that they are strictly positive valued and
that when performing operations such as selecting
them from a random distribution those operations
should be done using the natural logarithm of the
parameter value. This is typically advantageous for
values where the ratio between different parameter
values is more relevant than absolute values.

In the template creation script tokens with the name
of each parameter, such as '<springStrength>', are
used. These are replaced by an individual's
parameter values when the creation script for that
individual is generated. There are also a number of
additional tokens, such as '${imageFileStem}' and
'${speciesName}', that can be used in the template
script to represent values of useful variables that
will filled in with the appropriate values.

C:\bin\grayScott.exe <Da> <Db> <f> <k> ${imageFileStem}

Figure 2: Example of a simple template creation script

Since Windows batch files or Python scripts are
used for creation scripts, the creation script can
describe a series of commands that need to be
executed. For example, this can be used to do
additional image processing after the main
executable for the generative system has
completed, or to include more complex control logic
as part of the creation process.

4.2 Score sets and Categorization

Score sets are used by the user to rate and
categorize individuals. The values assigned to
individuals can then be used for purposes such as
selecting which individuals should be chosen as
parents for cross-breeding, or to estimate the likely
score value at new positions in parameter space.

Score values can be integers, floating point
numbers, or category values. By default there is a
single floating point score set called 'score' which
takes values in the range 0 to 10, but the user can
modify this and create their own additional score
sets.

Categories are a special type of score set that
allow each individual to be assigned a value from a
set of specified names instead of numeric values.
They are typically used to divide individuals into
groups that appear to have common properties.
For example you could have a category called
'formType' which could take values such as ‘brain’
or ‘reptile skin’ depending on the appearance of the
individual.

The value for any score set can also be set to
‘None’. This means that the individual hasn't been
assigned a score, and that individual will be ignored
when performing operations such as estimating the
score value at new positions in parameter space.
By default any newly created individual has all its
score set values set to 'None'.

The 'Score Chart' panel in the user interface can be
used to assist visualizing score values and
assigning scores to individuals. This panel uses
thumbnails for each individual, displaying them in
horizontal bars for each score value, and allows

4

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

assignments of scores by using keyboard short
cuts or drag and drop.

Figure 4: Image from the Plant-like Cellular Forms
series

4.3 Score expressions and selection tests

The selection of individuals, such as choosing
parents to breed from, is done using score
expressions and selection tests.

The score expression is a way of giving any
individual a fitness score. This can use values set
using score sets, but can also use full Python
mathematical syntax. This means that more
complex fitness values can be expressed than
simply using single score values. For example, in
addition to using 'score' to give an overall rating to
individuals you could have a score set called
'bushiness' to give a rating for how bush-like an
object is. You could then use:

score * bushiness

as a score function to select individuals that have a
high value for both 'score' and 'bushiness'.

Category values can also be used in score
functions. For example, if you have a category
called 'formType' and you want to select objects
that have a high value for 'score' and have had the
'formType' set to 'brain' you could use:

score * formType_values['brain']

The selection test is a boolean test used to specify
whether a given individual should be considered or
not. Simple selection tests are just lists of
individuals or populations. More advanced

selection tests can be specified by using Python
expressions that return boolean values. For
example, to only consider individuals whose
'formType' is 'brain' and whose value for
'bushiness' is greater than 5 you could use the
selection test:

(formType == 'brain') and (bushiness > 5)

4.4 Creation methods

A variety of different methods are provided that can
be used to select the parameter values for new
individuals. These govern how the software
suggests new sample points in the parameter
space where the generative system should be run
to produce results that the user can then evaluate.

The system is extensible, allowing new creation
methods to be easily implemented. The existing
creation methods can be divided into 3 types:
simple methods, evolutionary methods and
machine learning methods.

4.4.1 Simple creation methods
These methods calculate parameter values for new
individuals without needing any data from existing
individuals. These methods are typically used as a
first step to create an initial set of individuals.

Currently three methods are implemented:

 Random Population: parameter values are
created randomly using specified probability
distributions.

 Fixed Value: individuals are generated
using parameter values explicitly specified
by the user.

 Wedge Test: parameter values are
generated with regular spacing, similar to
test chart shown in Figure 1. This is
generally only useful for varying a small
number of parameter values.

4.4.2 Evolutionary creation methods
These methods involve selection of individuals to
act as 'parents', with the parameter values for new
child individuals being based on those of the
parents.

Currently the following methods are implemented:

 Standard Mutation: for each new individual
a single parent is selected, whose
parameters are randomly modified
according to specified distributions to create
the child.

 Adaptive Mutation: similar to Standard
Mutation, except the amount of mutation for
each parameter is based on the parameter
values of the nearest neighbours.

5

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

 Cross Blend: for each new individual two
parents are selected, with the parameters
for the child being randomly selected
blends of the parent values.

 Cross Blend Neighbours: similar to Cross
Blend except the second parent is chosen
from the closest neighbours of the first.

4.4.3 Machine learning creation methods
These methods use lazy machine learning
techniques to estimate the values of score
expressions at new positions in the parameter
space. New individuals are chosen based on these
estimate values using a Monte Carlo method to
estimate the score expression at a number of
candidate points, and choose one of the candidates
with a probability proportional to the estimated
values. This means that parameter combinations
that are expected to have high values for the score
expression will be preferentially selected.

Two methods for estimating values of score
expressions are currently implemented:

 K-Nearest Neighbours: values are
estimated by finding the nearest neighbours
to the sample point that have a valid value
for the score expression and averaging
them using a weight function based on the
distance from the sample point to each of
the neighbours.

 Radial Basis Function: values are estimated
using a radial basis function to interpolate
the values from a given number of
neighbours.

When estimating values from a category score set
separate floating point valued functions are created
for each name value that the category can take,
These functions have the value 1 if an individual
has been assigned the corresponding name value
and 0 if they don't. This allows interpolation
methods to be used, with the results interpreted as
a measure of the probability that an individual
generated at the specified position in parameter
space will take that name value. For example, the
estimated value could be used to measure the
probability that a form generated with a given set of
parameter values will be 'reptile skin' like.

4.5 Additional Features

A number of panels are provided in the UI for
special purposes such as:

 Genealogy Chart: shows a graphical
representation of the parents and children
of the currently selected individual.

 Statistics Tests: allows implementation of
Python plug-ins to run statistic tests on data
such as correlation between parameters

and scores. Also allows display of data in
graphical form such as histograms or
scatter charts.

The system also provides the ability to specify
species specific extensions using plug-ins. These
allow customizations such as special widgets to
modify how individuals are shown in the Individual
Examiner, actions to be triggered based on global
key-press events, and calculation of additional
meta-data that will be held for each individual after
the generation process for that individual has
completed.

5. RESULTS

5.1 Different search phases

One of the main strengths of the system is to
provide a variety of different techniques for
generating parameter values, each of which may
be appropriate depending on the user's intent.

5.1.1 Initial exploration
During the first phase of exploring a new generative
system, when the user typically doesn't have a
clear idea of what regions of the parameter space
may be interesting, simple creation methods such
as random parameter generation as described in
4.4.1 are generally appropriate.

In general the author has found that simple random
parameter generation is useful for this phase. If the
number of parameters is small (typically 3 or less)
then a Wedge Test that samples all the parameters
with regular spacing,may be used.

5.1.2 Secondary exploration
Once the user has got some initial results from
random sampling the next phase is generally rating
those results using score sets and using creation
methods that preferentially create more samples in
areas that are likely to be productive without overly
narrowing the search.

During this phase machine learning methods that
can estimate score functions at any position in
parameter space appear to work well. As long as
the estimated score is better than random, the
search should get directed towards more
productive regions.

5.1.3 Refined focus
If the user finds some particularly interesting
individuals that they want to refine further then
other methods are generally preferable. In
particular the intent is to focus the search within a
limited range of parameter values around
interesting individuals rather than search a wide
region of the parameter space.

6

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

During this phase the author generally creates a
selection pool of the individuals that he is
particularly interested in and uses adaptive
mutation or cross-breeding between neighbours
with the first parent chosen from the selection pool.

5.1.4 Looking for novelty
In contrast to the previous section, if the user's
intent is to find new interesting regions of the
parameter space then other methods may be more
appropriate.

Since cross breeding and mutation methods
generally bias the search towards regions that have
already been highly sampled, the author typically
utilizes machine learning methods when looking for
novel results.

During this phase carefully constructed score
expressions can be beneficial. For example, it may
be useful to try to focus the search on regions
where the score for individuals is significantly
different from what would be expected using
estimation. One way of expressing this is to
calculate the difference between the actual score
given to each individual and the estimated score
that would have been given based on all the other
individuals, and then using a score expression such
as

abs(estimatedScore – score)

5.2 Machine learning methods

While searching for appropriate machine learning
methods, the author has run tests to try to evaluate
which methods appear to work best with the type of
data created. In particular we want methods that
can estimate arbitrary score expressions for new
parameter values, don't require the user to fine
tune values or specify features, can make use of all
the data the user has supplied as soon as the user
has rated any individuals, and aren't aversely
affected by non-uniform distribution of samples.
This has led the author towards lazy machine
learning techniques such as k-nearest neighbours
and interpolation using radial basis functions.

To help determine which methods produce the
most useful estimates, the author has tested a
number of data sets from his work on the Cellular
Forms and Hybrid Forms series using variations on
k-nearest neighbours and radial basis functions.
Presented here are the results from 3 data sets. To
provide a measure of how well each method
estimates the score the tests use the root mean
square error value of the difference between the
score the author assigned to each individual and
the score that would be estimated by each method
using the set of previously generated individuals.
Data was only used from the previously generated

individuals to make sure that the tests account for
early stages in the search when there are only a
small number of data points available to create the
estimates.

When using k-nearest neighbours, weight functions
of the form 1/dn, where d is the distance in
parameter space between two points, were tested
with various exponent values n. For the radial basis
functions all the standard interpolation basis
functions provided by the Python SciPy library were
tested.

To provide a baseline comparison of whether these
methods are providing better than random
estimates, the RMS error was also calculated
using the average score of all previous individuals
as the score estimator.

Table 1: Data sets used to evaluated score estimation
methods

Data set No. of
individuals

No. of
species

parameters
Set 1 (Cellular Forms) 1776 12

Set 2 (Plant-like Forms) 2200 19

Set 3 (Hybrid Forms) 6926 28

Table 2: RMS error values for different score estimation
methods. The best (smallest) results for each data set

are highlighted

Score estimation
method

RMS score error

Set 1 Set 2 Set 3

Average (baseline) 3.268 2.141 2.120

kNN weight n=0 2.946 1.944 1.717

kNN weight n=1 2.904 1.939 1.711

kNN weight n=2 2.869 1.935 1.704

kNN weight n=3 2.868 1.931 1.697

kNN weight n=4 2.886 1.929 1.691

RBF Linear 2.779 1.910 1.404

RBF Inverse 7.663 1.963 1.421

RBF Gaussian 10.26 1.989 1.537

RBF Multiquadratic 11.07 2.182 1.693

RBF Thin-plate 15.14 166.5 172.8

RBF Cubic 95.13 3117 527.3

RBF Quintic 8107 337.6 2587

As can be seen, estimation using a linear radial
basis function consistently gave the best (lowest)
RMS score error in all cases. Different basis
functions give very different results. In particular,
thin-plate, cubic and quintic basis functions were
the worst performing, with RMS errors that were
worse than using a simple average as the
estimator, and often significantly higher than the
maximum score range of 10. This is probably due

7

Species Explorer: an interface for artistic exploration of multi-dimensional parameter spaces
Andy Lomas

to these methods over-fitting the data and
extrapolating. This may be exacerbated by the
nature of the data, with non-uniform sampling and
potentially inconsistent assignment of score values
by the user when making subjective assessments.

The RMS score errors using k-nearest neighbours
are all better than the baseline method using the
average score, with an inverse weight exponent of
4 giving the best from test data, though the results
for all the different inverse weight exponents are
quite similar.

Using linear radial basis functions appear to
generally give the lowest RMS error scores, but k-
nearest neighbours can be computationally faster
to calculate. The default options in Species
Explorer are set to offer both radial basis functions
using linear or k-nearest neighbours using an
inverse weight exponent of 4.0.

6. FUTURE WORK

Species Explorer is very much a work in progress,
with the author actively adding new features as he
gains experience using it.

There are a number of areas for future work, in
particular to explore alternative methods of
estimating score functions for new parameters.
Since they are based on distance measures and
proximity to neighbours, the current use of lazy
machine learning methods is likely to be less
effective if significantly more parameters are used.

7. CONCLUSION

Species Explorer was born out of necessity when
dealing with generative systems with more than 3
parameters. Allowing a number of different
methods to determine the parameter values to next
sample appears to work well, with different
methods being appropriate depending on the intent
of the user.

In many ways the proof of a system like this is
whether it produces good results. As the author has
been the only user to date this is somewhat difficult
to evaluate, but all the exhibited work from his
Cellular Forms and Hybrid Forms series has been
generated using samples suggested by Species
Explorer. With 10 or more parameters, testing the
effects of all parameter combinations was
impossible and complex inter-dependence between
parameters meant that varying one parameter at a
time was not creating the desired results. The
author felt he has a rich simulation engine but was
frustrated by how difficult it was to explore its
possibilities.

With Species Explorer the author feels that he has
been able to much more effectively explore the
space of possibilities, and doesn't believe that he
would have been able to create most of his recent
results without it acting as a loyal but honest
assistant in the creative process.

Figure 5: Image from the Hybrid Forms series

8. REFERENCES

Conway, J. (1970) The game of life. Scientific
American, 223(4), p.4.

Turing, A.M. (1952) The chemical basis of
morphogenesis. Philosophical Transactions of the
Royal Society of London B: Biological Sciences,
237(641), pp.37-72.

Dawkins, R. (1986). The blind watchmaker: Why
the evidence of evolution reveals a universe
without design. WW Norton & Company.

Todd, S. and Latham, W. (1992) Evolutionary Art
and Computers. Academic Press, London.

Bentley, P. (1999) Evolutionary design by
computers. Morgan Kaufmann.

Hanna, S. (2007) Inductive machine learning of
optimal modular structures: Estimating solutions
using support vector machines. AI EDAM: Artificial
Intelligence for Engineering Design, Analysis, and
Manufacturing, 21(04), pp.351-366.

Umetani, N., Igarashi, T. and Mitra, N.J. (2012)
Guided exploration of physically valid shapes for
furniture design. ACM Trans. Graph., 31(4),
pp.86:1-86:11

Oberhauser, M., Sartorius, S., Gmeiner, T. and
Shea, K. (2015) Computational Design Synthesis of
Aircraft Configurations with Shape Grammars. In
Design Computing and Cognition'14 (pp. 21-39).
Springer International Publishing.

Lomas, A (2014) Cellular Forms: an Artistic
Exploration of Morphogenesis. AISB-50, London,
UK, 1-4 April 2014. Goldsmiths, University of
London.

8

